Устройство
Тепловой насос — высокоэффективная и экономичная конструкция, основанная на использовании как физических явлений (цикла Карно), так и низкопотенциальных природных ресурсов — тепла грунта, воды и воздуха. На первый взгляд, возможности этих источников практически отсутствуют, однако, все эти ресурсы обладают огромным запасом тепловой энергии. Мало того, они совершенно бесплатны и практически неисчерпаемы, что делает их привлекательными для использования.
Принцип работы
Основным элементом теплового насоса является замкнутый контур, в котором циркулирует хладагент (фреон), воспроизводящий цикл Карно. Последовательно происходят следующие действия:
- испарение. Жидкий фреон переходит в газообразную стадию, забирая у окружающей среды большое количество тепловой энергии
- сжатие. Фреон проходит через компрессор, где его давление многократно увеличивается. При этом температура хладагента значительно повышается
- конденсация. Хладагент переходит в жидкую стадию, параллельно отдавая тепловую энергию
- резкое расширение, вызывающее падение давления. После этого цикл повторяется
Горячий фреон, находящийся в состоянии конденсации, пропускается сквозь змеевик теплообменника, в котором тепловая энергия отдается в систему отопления. Тепло от внешнего источника необходимо для подогрева холодного фреона, находящегося в стадии испарения. Для отбора тепловой энергии используется испаритель, также являющийся теплообменником. Различие в том, что здесь хладагент не отдает, а забирает тепло у воды или воздуха, чтобы во время конденсации высвободить его, многократно усиленное при повышении давления.
Система работает, потребляя только электроэнергию, требующуюся на питание компрессора и циркуляционных насосов. Коэффициент эффективности (COP) равен как минимум 2, а при благоприятных условиях он поднимается до 5-6 и даже выше.
Плюсы и минусы
Тепловые насосы обладают массой достоинств:
- устойчивость работы, надежность
- экономичность, высокая эффективность
- источник тепловой энергии обладает неисчерпаемым ресурсом и достается бесплатно
- экологически чистое оборудование
- система совершенно безопасна в пожарном отношении
К недостаткам устройств следует отнести:
- не все виды способны работать в сложных условиях, имеется зависимость от внешней температуры
- для работы системы требуется электричество, отсутствие которого сразу остановит процесс
- оборудование и установка очень дорогие и недоступны для большинства пользователей
- для некоторых видов ТН требуется разрешение на земляные работы
Большинство недостатков тепловых насосов являются, скорее, особенностью их конструкции, вызывающей отрицательное влияние на возможности этого вида отопительных систем. В любом случае, планируя использование ТН, надо учитывать все положительные и отрицательные стороны конструкции.
Чем хорош тепловой насос
- Сокращение расходов. Платежи за энергопотребление уменьшаются в несколько раз. Оборудование не окупится сразу, но со временем принесет ощутимую выгоду.
- Локализация системы теплоснабжения. Источник тепла располагается рядом с потребителем, не требуется прокладка протяженных инженерных коммуникаций. Это особенно удобно при теплоснабжении удаленных районов, куда тянуть газопровод нерентабельно, а завоз топлива в бочках недешев и сопряжен с загрязнением природной среды.
- Реверсивность. Одну и ту же установку можно использовать для подключения систем отопления с горячим водоснабжением и при необходимости переводить в режим кондиционирования помещения.
- Гарантия безопасности. Не приходится нести риски, связанные с наличием пожаро- и взрывоопасных источников тепла в помещении.
- Программируемая настройка. Параметры работы могут автоматически изменяться на основании датчиков температуры, выставленных приоритетов или времени суток.
- Простота технического обслуживания. Внимания тепловому насосу малой мощности требуется не больше, чем обычному холодильнику или кондиционеру. Для работы оборудования большой мощности нужна лишь периодическая проверка да замена компрессора раз в 15–25 лет.
- Минимальное воздействие на окружающую среду. Отсутствие процессов сжигания топлива улучшает экологию. Существенно сокращаются выбросы в атмосферу диоксида углерода (углеродный след).
Деление по типу рабочего тела
Современные теплонасосы могут использовать газообразное тело или химический жидкий раствор аммиака в роли транспортера тепла. Пригодность той или иной схемы оценивается по нескольким факторам, особенностям систем.
- Установки, использующие фреон, имеют цикл теплового насоса, основанный на процессах сжатия и расширения газа. Они так или иначе построены на компрессорной схеме. Оборудование обладает привлекательными показателями производительности, однако имеет и недостатки. Хотя средневзвешенное потребление системы в момент рабочего цикла стабильно, проводка сильно нагружается. Кроме этого, теплонасосы с газообразным транспортером тепла не будут полезны в регионах, где нет централизованных сетей электричества или источника питания достаточной нагрузочной способности.
- Установки испарительного типа, использующие аммиачный раствор, имеют рабочий цикл, основанный на процессе испарения вещества при низких температурах кипения. Сжижение после прохода внешнего теплообменника происходит под действием источника энергии. Это — тепловая горелка. Для нее может применяться практически любое топливо: твердое, бензин, дизель, газ, керосин, в отдельных случаях — метиловый спирт. Поэтому испарительные теплонасосы привлекательны в местах, где нет электричества. Кроме этого, к выбору именно такого оборудования может подтолкнуть дешевизна топлива определенного вида в регионе.
Характер используемого в системе рабочего тела может многое сказать о производительности установки и отдачи мощности. Так, фреонные компрессорные теплонасосы способны на резкий рывок, быстро прогревая помещение. Аммиачные испарительные модели на такие подвиги не способны. Их предпочтительный режим использования — стабильная, постоянная работа с номинальной теплоотдачей.
Тепловые насосы для отопления небольших помещений или под ГВС
Предназначение – экономичное отопление жилых и вспомогательных помещений, обслуживание системы горячего водоснабжения. Самым низким потреблением (до 2 кВт) выделяются однофазные модели. Для защиты от скачков напряжения в сети им нужен стабилизатор. Надёжность трёхфазных, объясняется особенностями сети (нагрузка распределяется равномерно) и присутствием собственных защитных цепей, предотвращающих повреждение устройства при перепадах напряжения. Оборудование этой категории не всегда справляется с одновременным обслуживанием системы отопления и контура горячего водоснабжения.
1. Huch EnTEC VARIO КНР S2-E (Германия) – от 184 493 руб.
Huch EnTEC VARIO самостоятельно не эксплуатируется. Только в связке с накопительным баком системы горячего водоснабжения. ТН подогревает воду для санитарных нужд, охлаждая воздух в помещении.
Из преимуществ – небольшое энергопотребление прибора, приемлемая температура воды в контуре ГВС и функция очистки системы (периодическим кратковременным нагреванием до 60 °С) от патогенных бактерий, развивающихся во влажной среде.
Минусы в том, что прокладки, фланцы и манжету, надо докупать отдельно. Обязательно оригинальные, иначе будут потёки.
При расчёте необходимо помнить, что устройство прокачивает 500 м³ воздуха в час, поэтому минимальная площадь помещения, в котором установлен Huch EnTEC VARIO, должна быть не менее 20 м², при высоте потолка в 3 и более метра.
Характеристикиа | Значение |
---|---|
Схема работы | Воздух — вода |
Тепловая мощность, кВт | 3.2 |
Потребляемая электроэнергия, кВт/ч (сеть) | 1.9 (220) |
Температура теплоносителя на выходе, °С | 55 |
Диапазон рабочей температуры первичного контура, °С | +7…+35 |
Хладагент, тип | R134А |
Вес, кг | 31 |
2. NIBE F1155-6 EXP (Швеция) – от 355 161 руб.
Модель заявлена, как «интеллектуальное» оборудование, с автоматической настройкой под потребности объекта. Внедрена инверторная схема питания компрессора – появилась возможность настраивать выходную мощность.
Присутствие такой функции при малом числе потребителей (точки водоразбора, радиаторы отопления), делает отопление небольшого дома более выгодным, чем в случае с обычным, неинверторным ТН (у которых нет плавного пуска компрессора и выходная мощность не регулируется). Потому что у NIBE, при малых значениях мощности, тэны включаются редко, а собственное максимальное потребление теплового насоса – не более 2 кВт.
В условиях небольшого объекта шум (47 ДБ) не приемлем. Оптимальный вариант установки – отдельное помещение. Обвязку размещать на стенах не примыкающим к комнатам для отдыха.
Характеристика | Значение |
---|---|
Схема работы | Рассол — вода |
Тепловая мощность, кВт | 4-16 |
Потребляемая электроэнергия (сеть, V/насосы, компрессор/тэны), кВт/ч | 380 / 1.9 / 9 |
Температура теплоносителя на выходе, °С | 65 |
Диапазон рабочей температуры первичного контура, °С | 0… +35 |
Хладагент, тип | R 407C |
Вес, кг | 185 |
3. Fujitsu WSYA100DD6 (Япония) – от 524 640 руб.
«Из коробки» работает только на нагрев в одном контуре. Опционально предлагается комплект для подключения второго контура, с возможностью независимой настройки для каждого. Но сам тепловой насос рассчитан на систему отопления помещения до 100 м², с высотой потолка не более 3 метров.
В списке преимуществ – небольшие габариты, работа от бытовой электросети, регулировка температуры на выходе 8…55 °С, что по замыслу производителя должно было как-то повлиять на комфорт и точность управления подключенными системами.
Но всё перечеркнула низкая мощность. В нашем климате, отапливая заявленные 100 м², устройство будет работать на износ. Что подтверждают частые переходы устройства в «аварийный» режим, с отключением помпы и ошибками на дисплее. Случай не гарантийный. Исправляется перезапуском оборудования.
«Аварии» влияют на расход электроэнергии. Потому что когда умолкает компрессор, в работу включается тэн. Поэтому совместное подключение контуров СО и тёплого пола (или ГВС) допустимо на объекте площадью не более 70 м².
Характеристика | Значение |
---|---|
Схема работы | Воздух — вода |
Тепловая мощность, кВт | 6 |
Потребляемая электроэнергия, кВт/ч (сеть) | 2.04 (220) |
Температура теплоносителя на выходе, °С | 60 |
Диапазон рабочей температуры первичного контура, °С | -20… +35 |
Хладагент, тип | R410A |
Вес, кг | 42 |
Классификация тепловых насосов по характеристике сред
Классификация теплонасосов достаточно объемна. Устройства делятся по роду рабочего тела, принципу изменения его физического состояния, использованию устройств преобразования, характеру необходимого для работы энергоносителя. Если учесть, что на рынке представлены модели с разнообразными комбинациями классификационных критериев, становится понятно, что достаточно трудно перечислить все. Однако можно рассмотреть основные принципы группового деления.
От параметров источника тепла и среды-получателя зависит монтаж, конструкция, а также конечные характеристики теплового насоса. Сегодня предлагается несколько типов инженерных решений.
Воздух-воздух
Теплонасосы воздух-воздух — самые распространенные устройства. Они компактны и достаточно просты. На механике такого типа работают бытовые кондиционеры с режимом отопления. Принцип действия прост:
- уличный теплообменник охлаждается ниже температуры воздуха и отбирает тепло;
- после сжатия поступающего фреона в радиатор его температура сильно возрастает;
- вентилятор внутри комнаты, обдувая теплообменник, обогревает помещение.
Отбор энергии окружающей среды не обязательно производится внешним теплообменником. Для этой цели воздух может нагнетаться в расположенный в комнате блок. Именно так работают некоторые канальные системы.
Если в кондиционере происходит сжатие и расширение фреона, то в вихревых теплонасосах используется простой воздух. Механика работы аналогична: до поступления во внутренний теплообменник газ сжимается, а отдав энергию — задувается интенсивным потоком в камеру отбора тепла.
Вода-вода
Теплонасос типа вода-вода работает по тому же принципу, что и другие установки. Отличаются только среды передачи энергии. Оборудование оснащается погружными зондами, чтобы даже в условиях жесткой зимы добраться до горизонта грунтовых вод с положительной температурой.
В зависимости от потребностей отопления, теплонасосные системы вода-вода могут быть совершенно разного размера. К примеру, начиная от нескольких скважин, пробуренных вокруг частного дома, заканчивая расположенными непосредственно в водоносном слое теплообменниками большой площади, которые закладываются на этапе строительства здания.
Теплонасосы вода-вода отличаются большей производительностью и эффективной мощностью отдачи. Причина — в повышенной теплоемкости жидкости. Слой воды, в котором расположен зонд или теплообменник, быстро отдает энергию, а благодаря огромному объему незначительно снижает свои характеристики, способствуя стабильной работе системы. Также оборудование вода-вода отличается повышенным КПД.
Совет! В определенных условиях схема вода-вода может обойтись без промежуточных узлов в виде накопительных баков отопительной сети. Правильно оценивая существующие климатические условия и выбирая мощность установки, в доме устанавливается водонагреватель с тепловым насосом и организуется эффективная система теплый пол.
Вода-воздух, воздух-вода
Комбинированные системы нужно выбирать особенно внимательно. При этом тщательно оцениваются существующие климатические условия. Например, цикл теплового насоса класса вода-воздух имеет хорошую эффективность для отопления в регионах с сильными морозами. Система же воздух-вода в связке с теплым полом и накопительным бойлером вторичного нагрева способна показать максимальные результаты экономии на территориях, где температура воздуха редко падает ниже -5…-10 градусов.
Расплав (рассол)-вода
Теплонасос данного класса — своеобразный универсал. Он может применяться буквально везде. Показатели его полезной тепловой мощности постоянны и стабильны. Принцип работы рассольно-водного устройства основан на отборе тепла, прежде всего, из почвы, имеющей нормальные показатели влажности или заболоченной.
Расчет теплового насоса класса рассол-вода делается по уровню потребности в энергии для отопления. Методик ее количественного определения предостаточно
Можно произвести максимально четкий расчет, принимая во внимание материал стен дома, конструкции окон, характер почвы, средневзвешенную температуру воздуха и многое другое
Производители рассольно-водных систем предлагают различные варианты моделей, отличающихся мощностью потребления узла преобразования, конструкцией и габаритами внешних теплообменников, параметрами выходного контура. Выбрать оптимальный теплонасос по заранее сформированному списку требований несложно.
Основные характеристики
При выборе модели ТН следует учитывать:
- выходную тепловую мощность;
- коэффициент трансформации тепловых насосов;
- условный кпд;
- годовую эффективность и издержки.
Выходная мощность
При создании нового проекта дома учитывают его потребности в тепле с учетом конструктивных особенностей материалов, создающих теплопотери через стены, окна, двери, потолок и пол помещений различных габаритов. Расчет учитывает создание комфорта при самых низких морозах в конкретной местности.
Потребляемая тепловая мощность здания выражается в кВт. Она должна покрываться вырабатываемой энергией теплового насоса. Однако часто при расчетах делают упрощение, позволяющее экономить: длительность самых холодных дней в течение года не превышает нескольких недель. На этот период подключается дополнительный источник тепла, например, ТЭНы, подогревающие воду в котле.Они работают только в критических ситуациях при морозах, а в остальное время отключены. Это позволяет использовать ТН с меньшими мощностями.
Возможности конструкций
Для справки. Модели выходной мощности 6÷11 кВт «рассольно-водяных» схем способны нагревать воду встроенных баков в относительно небольших постройках. Мощность в 17 кВт достаточна для поддержания температуры воды 65ºС у котла с емкостью 230÷440 литров. Потребности в тепле средних по величине зданий покрывают мощности 22÷60 кВт.
Коэффициент трансформации тепловых насосов Ктр
Он определяет эффективность конструкции по безразмерной формуле:
Kтр=(Твых-Твх)/Твых
Величина «Т» обозначает температуру теплоносителей на выходе и входе в конструкцию.
Коэффициент преобразования энергии (ͼ)
Его рассчитывают для определения доли полезной мощности тепла по отношению к приложенной энергии на компрессор.
ͼ=0,5Т/(Т-То)=0,5(ΔТ+То)/ΔТ
Для этой формулы температура потребителя «Т» и источника «То» определяется в градусах Кельвина.
Величину ͼ можно определить по количеству затраченной энергии на работу компрессора «Рэл» и полученной полезной теплопроизводительности «Рн». В этом случае его называют «СОР» по сокращению от английского термина «Coefficient of perfomance».
ͼ=Рн/Рэл
Коэффициент ͼ — переменная величина, зависимая от перепада температур между источником и потребителем. Он обозначается цифрами от 1 до 7.
Условный КПД
Некоторые продавцы в рекламных целях «называют» показатель СОР термином КПД и заявляют, что он больше единицы и составляет 400 или 500%.
Это неверное утверждение: коэффициент полезного действия учитывает потери мощности при работе конечного устройства.Для его определения надо выходную тепловую мощность разделить на приложенную с учетом энергии геотермальных источников. При таком расчете вечного двигателя не получится.
Годовая эффективность и издержки
Коэффициент СОР оценивает работу теплового насоса в определенный момент времени при конкретных условиях эксплуатации. Чтобы проанализировать работу ТН, введен показатель эффективности системы за год (β).
β=Qwp/WeІ
Здесь символ Qwp обозначает величину тепловой энергии, произведенной за год, а Wel — значение потребленного электричества установкой за то же время.
Показатель издержек Eq
Эта характеристика обратна показателю эффективности.
Eq=1/β
Для определения характеристик ТН используется специализированное программное обеспечение и заводские стенды.
Что такое тепловой насос, сфера его применения
Техническое определение теплового насоса — устройство для переноса энергии из одной области в другую с одновременным повышением результативности ее работы. Проиллюстрировать такую механику несложно. Представим ведро холодной воды и стакан горячей. Для их нагрева с определенной отметки тепла затрачено одинаковое количество энергии. Однако результативность ее применения — разная. Если одновременно снизить температуру ведра воды на 1 градус, полученной тепловой энергией можно довести жидкость в стакане практически до кипения.
Именно по такой механике работает тепловой насос, с помощью которого можно сделать обогрев бассейна или полностью обеспечить отопление загородного дома. Установка переносит тепло из одной области в другую, в общем случае снаружи помещения вовнутрь. Вариантов применения такой техники множество.
- При определенных показателях мощности теплового насоса обогрев дома становится недорогим и эффективным.
- Легко сделать ГВС с тепловым насосом, используя бойлеры вторичного нагрева.
- При определенных усилиях и правильном проектировании доступно создание полностью автономной отопительной системы, питающейся от солнечных батарей.
- Большинство моделей тепловых насосов — приемлемый вариант для теплого пола, используемого в роли нагревательного контура.
Чтобы выбрать и приобрести подходящую систему нужно, прежде всего, правильно ставить стоящую перед ней задачу. И только после выдвигать требования к мощности и оценивать приемлемость отдельных типов тепловых котлов для удовлетворения всех потребностей.
Тепловые насосы
Использование тепловых насосов в мире и в России
Тепловой насос – техническая конструкция, осуществляющая процесс переноса низкотемпературной теплоты, не подходящей для использования, на более высокотемпературный уровень. Работа теплового насоса чем-то напоминает работу водяного. Только водяной перекачивает воду, тепловой — теплоту.
В настоящее время в мире работает более 30 млн тепловых насосов различной мощности – от нескольких кВт до сотен МВт.
В России за последнее десятилетие тема тепловых насосов стала весьма актуальной. Это произошло по ряду причин.
В первую очередь, этому способствовало цена на газ. За последние 15 лет стоимость газа увеличилась на 500-600%.
- Во вторую очередь, система «проведения» газа в дом с каждым годом становится всё сложнее и сложнее. Иногда может потребоваться несколько лет, чтобы добиться подключения энергоресурса.
- В третью очередь, компании, занимающиеся вопросом тепловых насосов (подключение, проектирование, обслуживание), «не стоят на месте» и пополняют свой запас знаний о своем продукте ежедневно. Человеку проще будет отдать деньги «знающему» человеку и фирме с успешным опытом реализации в данной сфере.
- В четвертую очередь, тепловые насосы – это модно. Тепловой насос в плане внешнего могут «обыграть» под нужный дизайн.
Краткая история теплонасосов
Теория тепловых насосов возникла в 19 веке. Этому послужил, в первую очередь, интерес человечества к теплотехнике. Во вторую очередь — изобретение паровой машины (конец 18 века).
В 1852 году Уильям Томсон создал первый прототип теплового насоса, который был назван «heat multiplier» (в переводе с английского «умножитель теплоты»). Принцип работы данной разработки заключался в поступлении воздуха 1 во входной цилиндр 2 с улицы. В результате этого воздух расширялся и охлаждался. Далее воздух попадал в ресивер 3 ( — сосуд для скапливания газа, жидкости, пара), где осуществлялся его нагрев от наружного воздуха. Затем он поступал в выходной цилиндр 6, сжимаясь, нагревался. В нагретом состоянии он поступал в помещение 7 и обогревал его. Принцип работы такого механизма был основан на изменении температуры газов при их расширении и сжатии (эффект Джоуля-Томсона).
В 1856 году инженер Петер Риттер фон Риттингер усовершенствовал модель Томсана, тем самым создав первый тепловой насос.
После 1918 года, во время дефицита топлива, ученые начали проводить исследования в области тепловых насосов. Первая теплонасосная установка для обогрева помещения была создана в Шотландии инженером Д. Холдейном.
В 1938-1939 годах, в Цюрихе, была создана и введена в работу первая крупная ТНУ.
Вплоть до 1985 года устройство теплового насоса совершенствовали многие ученые, но в период с 1986 по 1995 спрос на данные конструкции упал из-за окончания «энергетического» кризиса.
Начиная с 2001 года по сегодняшний день, рынок тепловых насосов набирает большую популярность, вместе, с чем совершенствуясь.
Достоинства и недостатки тепловых насосов
Перейдем к плюсам и минусам тепловых насосов. Начнем с плюсов:
- Повышенный уровень комфорта. Тепловые насосы полностью автоматизированы. Устройства исправно работают практически без внешнего контроля. Позволяют снизить пожароопасность, не доставляют неудобств с доставкой топлива и доставкой дополнительного оборудования.
- Экологичность. Не производят вредоносные выбросы, тем самым не загрязняют экологию и не приносят вряд здоровью человека.
- Многофункциональность. тепловые насосы обладают не только функцией отопления, но и охлаждения, то есть устройства можно использовать в качестве кондиционеров.
- Безопасность. Для работы не требуется огонь и взрывоопасное топливо, благодаря этому срок службы возрастает до 25 лет.
Недостатки:
- Необходимо обеспечить в помещении трехфазную электросеть.
- Для исправной работы необходимо свести к минимуму перепады напряжения, дабы не спровоцировать поломку насоса.
- Необходимость качественного утепления в помещении, в котором устанавливается тепловой насос.
Тепловые насосы типа «грунт – вода», «грунт – воздух»
На глубине ниже 10 м температура грунта практически постоянна в течение всего года. Насосы типа «грунт – вода» используют тепловую энергию земли и передают ее для обогрева дома через систему водяного отопления. В тепловых насосах, работающих по принципу «грунт – воздух», тепловая энергия также отбирается у грунта и через компрессор напрямую передается воздуху, который используется для отопления зданий.
Механизм теплообмена следующий:
- Энергия, отобранная от земли, аккумулируется носителем, в качестве которого чаще всего используется незамерзающая жидкость — антифриз («рассол»).
- Опускаясь вниз по теплообменнику, «рассол» отбирает у грунта тепло (примерно 3 — 4 °С) и передает его фреону, циркулирующему во внутреннем контуре теплового насоса.
- Фреон, проходя через каналы испарителя, закипает и испаряется.
- Образовавшийся при этом пар поступает в компрессор, сжимается там (при этом температура его повышается), после чего горячий и сжатый пар направляется в теплообменник конденсатора, где охлаждается, передавая тепло воде.
- Вода используется в системе отопления и горячего водоснабжения, а жидкий фреон стекает на дно конденсатора, откуда, за счет перепада давлений, через дроссель возвращается в испаритель.
- Данный порядок цикличен — повторяется снова и снова.
Теплообменник в тепловых насосах типа «грунт – вода» бывает двух видов:
- Горизонтальный коллектор.
- Вертикальный коллектор.
Горизонтальный коллектор
При данной реализации отбирается тепло, накопленное в верхних слоях почвы в результате солнечного излучения, и коллектор представляет собой несколько контуров пластиковых труб, уложенных под слоем грунта.
Для отопления дома площадью 70 — 100 м² достаточно уложить приблизительно 200 — 320 м трубопровода несколькими петлями-контурами. Для этого нужен участок площадью примерно 150 — 200 м², то есть в 1,5 — 2 раза больше, чем отапливаемая площадь дома. Дальнейшее использование такого участка над коллектором возможно только в качестве лужайки или цветника.
Главное преимущество использования горизонтального коллектора в связке с тепловым насосом — простота монтажа и то, что при прочих равных условиях работы по монтажу оборудования обойдутся немного дешевле, чем бурение скважин.
Вертикальный коллектор
Грунтовые зонды вертикального коллектора представляют собой систему длинных труб, опускаемых в скважины глубиной 50-200 м.
Пространство в скважине вокруг зонда заполняется буровым раствором или цементно-бетонной смесью для защиты труб от повреждений и улучшения теплопередачи. Для дома площадью 70 — 100 м² понадобится 2 — 3 скважины глубиной около 50 м. Располагать скважины следует не ближе 2 м от стены дома, чтобы не повредить фундамент. Также скважины не должны находиться на одной линии течения подземных вод — иначе эффективность теплового насоса уменьшится.
Для вертикального коллектора не требуется большой участок, а на глубинах от 50 м температура грунта выше, потому эффективность теплообмена при использовании данной системы выше на 15 — 20%, чем у горизонтального коллектора.
Плюсы и минусы тепловых насосов
Технология использования тепла окружающей среды кажется новаторской, но существует уже достаточно давно. Интересно, что в 80-е годы в Ялте для обогрева санатория «Дружба» использовалось тепло моря. Тепловой насос не только обеспечивал отопление всего комплекса, но и нагревал воду в бассейнах, охлаждал комнаты в жаркие дни, обеспечивал горячей водой всю округу.
Преимущества тепловых насосов очевидны:
- экономия на отоплении;
- минимальные временные затраты на техобслуживание системы, отсутствие необходимости периодически добавлять топливо;
- дом можно надолго оставить в отопительный период, не боясь, что что-то случится с отопительной системой;
- полная экологичность, ведь вредные выбросы отсутствуют, а используемый хладагент безопасен;
- возможность использовать систему практически где угодно;
- универсальность – тепловой насос может использоваться не только для отопления, но и для охлаждения или горячего водоснабжения. Воду в системе ГВС догревает до 55С. Если этого мало, лучше дополнительно поставить бойлер;
- долговечность теплового насоса достигает 50 лет, правда, компрессор за это время придется все же заменить.
Минусов немного, но они существенные:
- большие капиталовложения на начальном этапе;
- при морозах ниже -20С эффективность почти всех тепловых насосов сильно уменьшается, потому если такие морозы в регионе нередки, придется задуматься о дублирующем варианте обогрева.